劣化ウランFAQ集 - 国際原子力機関
この文書は、国際原子力機関(IAEA)が2003年に発表した劣化ウランに関する文書 "Depleted Uranium FAQs" を日本語訳したものである。
翻訳は に基づいている。関連する文書は にて入手できる。
英語対訳付きはこちらからどうぞ。
- IAEA(2003) 『劣化ウランFAQ集』 [ 和訳 ] [ 対訳 ]
- UNEP(2003) 『劣化ウラン概況報告書』 [ 和訳 ] [ 対訳 ]
- UNEP(2003) 『【劣化ウランに関する抜粋】 「イラクの環境:UNEP 進捗報告」より』 [ 和訳 ] [ 対訳 ]
- UNEP(2003) 『【劣化ウランに関する抜粋】 「イラクの環境に関する机上調査」より』 [ 和訳 ] [ 対訳 ]
- WHO(2003) 『概況報告書 第257号 - 劣化ウラン』 [ 和訳 ] [ 対訳 ]
- WHO(2001) 『劣化ウラン:原因、被曝および健康への影響 ― 概要 ― 』 [ 和訳 ] [ 対訳 ]
一問一答
1. ウランとは何ですか?
ウラン(化学記号 U)は天然に見出される放射性元素である。純粋な形態ではそれは銀色の重金属で、鉛やカルシウム、タングステンと似ている。タングステンと同様に非常に高密度で、およそ 19 グラム毎立方センチメートルであり、鉛より 70% 密度が高い。それは一辺 10 センチメートルの小さな立方体でも 20 キログラムの重さになるほどの高い密度である。
国際原子力機関(IAEA: International Atomic Energy Agency)はウランを低比放射性物質と定義している。自然状態で、それは3種の同位体(U-234、U-235、および U-238)から成る。天然ウランでは見られない他の同位体に、U-232、U-233、U-236、および U-237 がある。下の表に、どんな量の天然ウランでも一定の値である、3種の同位体の質量比、半減期、および比放射能を示す。放射性同位体の半減期は元の放射能の量が半分にまで減衰するのにかかる時間である。比放射能は個々の放射性核種の単位質量当たりの放射能であり、放射性核種がどれくらい放射能を持っているかの指標に用いられる。それはこの表ではミリグラム(1 ミリグラム、mg、= 0.001 グラム)当たりのベクレル(Bq)で示されている。1 ベクレル(Bq)の放射能は 1 秒毎に平均で一回の崩壊が起こることを意味している。
|
天然ウランに見られるウラン同位体(U-234、U-235、およびU-238)の崩壊によってもっぱら生じる放射能濃度は 25.4 Bq/mg である。自然では、ウラン同位体は通常、その放射性崩壊生成物を伴って放射平衡(すなわち、それぞれの放射性子孫核種の放射能はその親核種ウラン同位体の放射能と等しい)状態にある。U-238 の崩壊生成物にはトリウム-234(Th-234)、プロトアクチニウム-234(Pa-234)、U-234、Th-230、ラジウム-226(Ra-226)、ラドン-222(Rn-222)、ポロニウム-218(Po-218)、鉛-214(Pb-214)、ビスマス-214(Bi-214)、Po-214、Pb-210、および Po-210 がある。U-235 の崩壊生成物にはTh-231、Pa-231、アクチニウム-227(Ac-227)、Th-227、Ra-223、Rn-219、Po-215、Pb-211、Bi-211、およびタリウム-207(Tl-207)がある。
天然ウランの同位体は主にアルファ粒子を放射して崩壊する。ベータ粒子の放射やガンマ放射線は低い。下の表に U-238、U-235、および U-234 によって放射される、核変換一回当たりの平均エネルギーを示す。
|
2. ウランは環境にどれくらい存在しているのですか?
ウランはあらゆる岩石や土壌、水や空気、そして自然の材料から作られたすべての物に微量に含まれている。これは活性金属であり、したがって、自然環境においては遊離ウランとしては存在しない。また、自然の鉱物中に見られるウランに加えて、産業活動によって生じたウラン金属および化合物が自然環境の元に放出されているだろう。
ウランは自然環境で他の元素と化合してウラン化合物を形成しているだろう。これらウラン化合物の溶解度は非常に様々である。自然環境のウランは主に酸化ウランとして見られ、通常は鉱物中に無酸素性不溶性化合物 UO2 として、またときおり地表水中に普通に可溶性な化合物 UO3 として見られる。可溶性のウラン化合物は自然環境において他の化学元素や化合物と化合して別のウラン化合物を形成しうる。ウラン化合物の化学形態は、その化合物がどれくらい容易に自然環境の中を移動できるかによって決まり、このことはそれがどれくらい有毒であるかをも決定しているだろう。一部の形態の酸化ウランは非常に不活性であり、地下水中でも下方に移動することなく、何千年も地中にとどまっているかもしれない。
土壌中の天然ウランの平均濃度はおよそ 100 万分の 2 であり、これは 1,000 kg の土壌中に 2 グラムのウランがあるのと等しい。これは 10 m × 40 m の典型的な庭の、上から深さ 1m の土壌はおよそ 2 kg のウラン(子孫核種の崩壊に伴う相当量の放射能を無視しても、ウラン同位体の崩壊によって実に 50,000,000 Bq の放射能に相当)を含んでいることを意味している。花崗岩中のウランの濃度は 100 万分の 2 から 100 万分の 20 の範囲に分布している。リン酸塩堆積物を伴う土壌では、ずっと高濃度(1 kg の土壌中に 50 - 1000 mg)でウランが見られるだろう。空気中では、ウランは粉塵として存在している。空気中のウランの非常に小さな塵状粒子は地表水や植物の表面、或いは土壌に堆積する。これらのウラン粒子は結局最後には土壌中や湖、河川、池の底に戻り、それらは既存の天然ウランと混ざってしまうだろう。空気中のウランの通常の放射能濃度はおよそ 2 μBq 毎立方メートルである(UNSCEAR 国連放射線影響科学委員会 2000)。
彼らが愛する女性のために連中は何をすべきか
水中のウランの大部分は岩石や土壌から溶け出したウランに由来している;空気から沈殿したウラン塵に由来するものは非常に僅かである。飲料水中の U-238 および U-234 の放射能濃度は 10分の数 mBq 毎リットルから数百 mBq 毎リットルの間であるが、フィンランドでは 150 Bq 毎リットルという高い放射能濃度が計測されたことがある(UNSCEAR 2000)。U-235 の放射能濃度は一般的に 20 倍以上低い。
植物に含まれるウランはそれが土壌から植物の根や他の部分に吸収された結果によるものである。野菜に含まれるウラン同位体の通常の放射能濃度は飲料水中に見られるものに比べて僅かに高い。穀物と葉菜で計測された U-238 の放射能濃度の範囲はそれぞれ 1 mBq/kg から 400 mBq/kg、6 mBq/kg から 2,200 mBq/kg であり、一方 U-235 の放射能濃度は 20 倍低い。根菜の放射能濃度は一般的に低い(UNSCEAR 2000)。
草や土の経口摂取によって家畜に移動したウランは尿や糞を通してすぐに排泄される。世界中の牛乳と肉製品で測定された U-238 の放射能濃度はそれぞれ 0.1 mBq/kg から 17 mBq、1 mBq/kg から 20 mBq/kg であり、U-235 の放射能濃度は 20 倍以上低い(UNSCEAR 2000)。
3. 劣化ウラン(DU)とは何ですか?
ある種の原子炉や核兵器の燃料を生産するために、ウランは核分裂に重要な役割を果たす U-235 同位体が「濃縮」される必要がある。濃縮の過程において U-235 の割合はその自然レベル(質量比 0.72%)から質量比 2% ないし 94% にまで増加させられる。その(濃縮ウランを取り除いた後の)副産物のウラン混合物は U-235 と U-234 の濃度が減少する。この濃縮過程の副産物が劣化ウラン(DU)として知られている。米国原子力規制委員会(NRC: Nuclear Regulatory Commission)による劣化ウランの公式な定義では、その U-235 の重量パーセントによる割合が 0.711% 以下のウランのことを言う。一般的には、軍事目的で利用される DU のウラン同位体の重量パーセント濃度は:U-238: 99.8%; U-235: 0.2%; U-234: 0.001% である。
下の表は、重量比と放射能比による天然ウランおよび劣化ウラン中のウラン同位体の割合の比較である。
|
4. 天然ウランに比べると DU の放射能は多いの?それとも少ないの?
DU は天然ウランよりも単位質量あたりの U-234 と U-235 の量が少なく、加えて、特に U-234 よりも重いすべての微量崩壊生成物と Th-231 が濃縮に先立つウランの抽出と化学処理において取り除かれるために、天然ウランよりもかなり放射能が低い。DU 中のウランだけの比放射能は、天然ウランでは 25.4 Bq/mg なのに対して 14.8 Bq/mg である。ウラン崩壊生成物がウラン同位体と(放射)平衡に達するには長い時間がかかる。例えば、Th-230 が U-234 と平衡に達するにはほぼ 100 万年かかる。
5. 人々はウランに自然被曝していますか?
すべての人は毎日、少量の天然ウランを経口摂取し吸引している。一般公衆が 1 日に経口摂取するウランは 1.3 μg(1 μg = 1 マイクログラム = 0.000001g)(0.033 Bq)、すなわち年摂取量は 11.6 Bq と見積もられている(UNSCEAR 2000)。また、一般公衆は毎年 0.6 μg (15 mBq)を吸引していると見積もられている。通常、一般公衆がウランの経口摂取と吸引によって受ける放射線量は 1 μSv/年 以下であろう。加えて、平均的な人は 水に含まれる Ra-226 やその子孫核種、住居の Rn-222 や 煙草の煙に含まれる Po-210 といったウランの崩壊生成物の経口摂取や吸引によって約 120 μSv/年 の放射線量を受けるだろう。
食生活の違いのために、世界中のウラン消費レベルにはかなり多様性があるが、主に、摂取量は人々が飲む水に含まれるウランの量に依存している。世界の一部では、水に含まれるウラン濃度が非常に高く、この結果、食品よりも飲料水に由来するウランの摂取量のほうが高い。例えば、フィンランドの一部のウラン消費量は数十マイクログラム/日にも及ぶ。
人体に含まれる天然ウランのレベルに関する情報については:
- ICRP Publication 23: International Commission on Radiological Protection, Reference Man: Anatomical Physiological and Metabolic Characteristics. ICRP Publication 23, Pergamon Press, Oxford (1975)
- RAND Report: Author(s): Harley N. H, Foulkes E. C., Hilborne L. H, Hudson A., Anthony C., R., A Review of the Scientific Literature as It Pertains to Gulf War Illnesses. Vol. 7, Depleted Uranium. RAND Report MR-1018/7-OSD (1999)
人間の平均的被曝線量に関する情報については:
- UNSCEAR Reports: UNITED NATIONS, Sources and effects of Ionizing Radiation, Report to the General Assembly with Scientific Annexes, United Nations Scientific Committee On The Effects Of Atomic Radiation, (UNSCEAR), UN, New York (1988, 1993, 1996, 2000).
インターネットリンク:
6. 劣化ウランはどのように軍事利用されていますか?
ウランの物理的および化学的特性は軍事利用に非常に適している。DU は戦車などの装甲板を貫くのに使用される弾薬の製造や、ミサイルの先端、戦車の装甲の材料に使用されている。劣化ウランで作られた装甲は、通常の対装甲弾による貫通力に対して、通常の硬圧延鋼装甲板よりもはるかに高い耐久性がある。
装甲貫通弾は一般的に「運動エネルギー貫通体」と呼ばれている。DU はその高い密度、自然発火性(DU は 600゜C から 700゜C の高熱と高圧に曝されると自然に発火する)、そして装甲板を貫通する際に断熱剪断によって鋭利化する特性のために、他の金属よりも優れている。標的に命中すると、DU 貫通体は発火し、粉々に断片化し、エアロゾル粒子(「DU 塵」)を発生させる。粒子の大きさは衝突角度、貫通体の速度、および温度に依存している。これら微細塵粒子は空気に触れると自然に発火しうる。小さな破片は炎によって発火燃焼するが、対戦車兵器に使用される貫通体や、航空機の平衡錘のような、大きな破片は通常は炎の中でも発火しないだろうということが試験の結果示されている。
劣化ウランの軍事利用に関する他の情報については:
7. DU には不純物が報告されています。どんな不純物ですか?
なぜ人々は泣いているのかい?
米国国防総省によって使用された劣化ウランのかなり大部分は天然ウランの濃縮に由来し、米国エネルギー省によって供給されている。しかしながら、1950年代から1970年代にかけては、米国エネルギー省は核分裂を起こさなかった U-235 を再利用するために使用済み核燃料から抽出した回収ウランの一部を濃縮していた。天然ウランとは異なり、回収ウランはウラン同位体 U-236 や、少量の超ウラン(ネプツニウムやプルトニウム、アメリシウムといったウランよりも重い元素)、テクネチウム-99のような核分裂生成物を含む人為的(人工)放射性核種を含有している。その結果、回収ウランの濃縮に由来する劣化ウラン副産物も、非常に低いレベルではあるが、これらの人為的放射性核種を含有している。また、回収ウランの濃縮過程においても、設備の内壁表面がこれらの人為的放射性核種に覆われ、同じ設備が天然ウランの濃縮のために使用された時に、これら放射性核種が後から天然ウランより生産された DU を同様に汚染した。精確な量は不明である。劣化ウラン試料の放射化学分析はこれらの微量不純物の割合が 10億分の 1 レベルであり、結果として劣化ウランの放射線量の増加は 1 パーセント以下であることを示している。米国原子力規制委員会はこれら微量汚染物質の存在をしっかりと認識しており、それらは安全であると結論している。劣化ウラン中の U-236 と Pu-239/240 の存在はUNEPの主導で2000年11月にコソボで行われた調査で収集された貫通体の分析によって確認された。貫通体に含まれる U-236 の放射能濃度は 60,000 Bq/kg のオーダーであり、プルトニウムの放射能濃度は 0.8 から 12.87 Bq/kg の範囲にまたがっていた。
これに関する追加情報については:
8. ウランや DU に被曝した人々についてどのような研究が行われてきましたか?
原子力時代の到来以来、ウランの利用は、ウラン鉱の採鉱、濃縮、核燃料の製造を必要としながら、広範囲に普及してきた。これらの産業はたくさんの人々を雇用し、労働者の健康について研究が行なわれてきた。鉱山労働者に対する主要な危険はウラン採鉱に関わるものだけでなく、ラドン(主に Rn-222)ガスとその崩壊生成物に対する被曝に由来している。ラドンの危険が知られていなかった時代に換気が不十分な採掘鉱で働き、したがって高レベルのラドンに被曝していた鉱山労働者についての研究は、この集団に肺癌が卓越し、ラドンガスに対する被曝の増加に伴い癌の危険が増加することを示した。また核燃料サイクルにおいてウランに被曝した労働者についての研究も行なわれてきた。癌の卓越についての報告がいくつかなされたが、鉱山労働者とは違って、被曝との相関関係を全く見出せなかった。これらの研究の主な結論は労働者の健康が平均集団よりも良いということであった。この「健康な労働者効果」は雇用に伴う選抜過程や雇用の総合的恩恵によるものであると考えられている。
DU に対する被曝に関して、湾岸戦争(1990-1991)やバルカン紛争(1994-99)の期間に実戦を経験した軍人の健康についての研究が行なわれてきた。湾岸戦争で退役した軍人の中には体内に入り込んだ DU の破片を手術でも摘出できない者が少数見られる。彼らは厳しい研究の対象となりその結果が公表された。これらの退役軍人の尿中の DU の排泄レベルは上昇していることを示すが、しかしこれまでのところ、この集団における DU の健康に対する影響は観察されなかった。また、DU が使用された紛争を経験した軍人の健康を、その戦争地帯にいなかった軍人の健康と比較した疫学的研究も行なわれてきた。これらの研究結果は公表され、その主な結論はこの戦争での退役軍人は若干(すなわち、統計的に意味がない)の死亡率の増加を示すものの、この卓越は疾病よりむしろ事故によるものであると示している。いかなる DU に対する被曝にもこれを関連付けることは不可能である。
鉱山労働者の被曝線量と危険に関する情報については:
- Lubin J., Boice J.D., Edling C. et al., Radon and lung cancer risk: A joint analyses of 11 underground miners studies, US Department of Health and Human Services, NIH Publication 94-3644, Washington D.C. (1994). [2]
ウランに関わる労働者の健康に関する情報については:
- McGeoghegan D. and Binks K., J Radiol Prot 20 11-137 (2000). [2]
DU に被曝した、或いはもしかしたら被曝したかもしれない軍人の研究に関する情報については:
- M A McDiarmid et alia, Environ. Res. A 82 168-180 (2000), G J Macfarlane et alia, The Lancet 356 17-21 (2000). [2]
9. ウランは体内でどのように振る舞いますか?
ウランは主に食品や水の経口摂取や空気の吸引によって体内に取り込まれる。
吸引されるとき、ウランは様々なサイズの粒子と結合している。ウランエアロゾルのサイズと肺や腸の中のウラン化合物の溶解度は体内におけるウランの輸送に影響を与えている。粗い粒子は呼吸器系の上部(鼻、副鼻腔洞、肺の上部)で捕獲され、そこから吐き出されるか、咽喉に運ばれた後に飲み込まれる。細かい粒子は肺の下部(気胞部)に達する。もしウラン化合物の溶解度があまり高くない場合には、ウランエアロゾルは長期間(最大16年間)にわたって肺の中に留まる傾向があり、放射線量の大部分を肺に放射するだろう。それらは徐々に溶解して血流の中へと運ばれるだろう。より可溶性な化合物では、ウランはよりすばやく肺から血流中へと吸収される。そのおよそ 10% がまずは腎臓において濃縮されるだろう。
経口摂取されるウランの大部分は数日以内に糞便として排泄され、一度も血流に達することはない。残った部分は血流へと運ばれるだろう。血流中のウランの大部分は数日中に尿を通して排泄されるが、ごく一部が腎臓、骨、その他軟組織に残存する。
10. ウランや DU は人々にどのような害がありますか?
DU もしくはウランと人間の癌疾病とに明確な関連性はありましたか?
量が十分であれば、経口摂取されたり吸引されたウランはその化学的毒性により危険となりうる。水銀やカドミウム、および他の重金属イオンと同様に、過剰なウラニル[3]イオンは腎機能を低下させる(すなわち腎臓に影響する)。高濃度では腎臓は損傷を受け、ひどいときには、腎不全が引き起こされる。一般的な医学的および科学的に一致した意見では、高度に摂取された場合、ウランは放射線学的な問題に先行して化学的毒性が問題となるだろう。ウランは弱放射性であるため、いったん体内に取り込まれると器官は放射線被曝もするが、主要な健康に対する影響は体機能に対するその化学作用に関係している。
多くの国では、可溶性ウラン化合物の職業被曝限度が腎組織 1 グラムあたり 3 μg の最大濃度に相当するよう設定されている。これらのレベルで腎臓の被曝によって引き起こされるいかなる影響も小さく一時的なものであると考えられている。これらの限度に基づく、現在のやり方は、ウラン産業の労働者を適切に保護しているようである。この腎濃度が超過しないことを確実にするために、法律は職場の可溶性ウランの空気濃度を長時間(8 時間)で 0.2 mg 毎立方メートル、短時間(15 分)で 0.6 mg 毎立方メートルと制限している。
すべての放射性物質と同様に、天然および劣化ウランにより放出された放射線に対する被曝には癌の発症の危険がある。この危険性は受けた線量に比例すると考えられている。放射線被曝の限度は国際放射線防護委員会(ICRP: International Commission on Radiological Protection)により勧告され、IAEA の基本安全基準に採用されてきた。一般公衆の年間線量限度は 1 mSv であり、一方、放射線労働者の当該の限度は 20 mSv である。1 mSv の線量によって付加される致命的な癌の危険性はおよそ 20,000 分の 1 と考えられている。一生の中でのこの小さな危険の増加は、致命的な癌を発症する危険性を誰でも 5 分の 1 は持っているということを鑑みて、考察されるべきである。また、放射性物質に対して被曝してから何年も後まで癌が表に現れないことがあるということも注意しなければならない。
ツチブタ動物はどこに位置しています
上記の化学的および放射線学的限界を超過する前に、人がどれだけの DU に被曝しうるかを見積もることは可能である。下の表は、腎臓 1g 当たり 3 µg の腎濃度あるいは 1 mSv の線量(放射線量限度)に至るには、どれくらいの劣化ウランが吸引あるいは経口摂取されねばならないかを示している。これらの値は国際放射線防護委員会(ICRP)によって現在勧告されている体内動態モデルに従って計算されたものである。その値は二種類のウラン化合物について計算されている:UO3 や U3O8 のような<普通に可溶性>な化合物と、UO2 のような<不溶性>な分子について。
|
もし摂取が長期間にわたるものであるならば、DU を排出するのにもより多くの時間が与えられるので、腎濃度 3 μg [4]毎グラムに至るのに必要な量はもっと多くなるだろうということを覚えておくべきである。DU の経口摂取についての、腎組織 1 グラムあたり 3 μg の化学的毒性限度は(一般公衆における) 1 mSv の放射線学的限度よりも必要とする摂取量は小さいということをこの表は示している。DU エアロゾルの吸引については、この状況が逆転している。
また、ウラン同位体による放射線障害に加えて、ウラン同位体の放射性崩壊により形成される他の放射性核種が経口摂取される食品中や吸引される空気中に見られることがあり、それに起因する潜在的危険性が存在する。上の表の値は体内でのこれらの放射性核種の増分を考慮に入れて計算されているが、経口摂取された食品中や吸引された空気中のこれらの放射性核種の寄与を含んではいない。
別の潜在的に有害な影響に、ウラン同位体によって放出された放射線に対する外部被曝によるものがある。ウラン同位体により放出される主要な放射線はアルファ粒子(ヘリウム原子核)である。空気中のこれらのアルファ粒子の射程距離は 1 センチメートルのオーダーのものであり、組織について言えば、それらは表皮上の死んだ細胞層を貫通することはほとんどない。それに比べて、ベータ粒子(電子)は 1 センチメートルの組織を貫通する能力があり、ガンマ粒子(高エネルギー光子)は体を通り抜けることができる。したがって、ウランが直接体内に挿入でもされていない限り(例えば、傷口を通して)、ウラン同位体に対する外部被曝による潜在的な危険性は極めて低い。そのうえ、アルファ粒子は放射源からたいして遠くには移動できないので、人が被曝しうるのはウラン同位体に直接接触してしまった場合だけであろう。しかしながら、天然ウランについてはこの限りではなく、通常ウラン同位体と平衡状態で見られるウランの崩壊生成物によって放出される、より貫通力のあるベータおよびガンマ放射線に対しても人々は被曝する。DU の場合に存在するベータ放出崩壊生成物は Th-234、Pa-234m および Th-231 だけであり、そのすべての強度ガンマ線の放出は低く、したがって DU に対する外部被曝の危険性は天然ウランに対する被曝よりも相当低い。
ウランに被曝した労働者についてはたくさんの研究があり(質問 8 を参照)、一部の労働者は多量のウランに被曝しているにも関わらず、天然ウランもしくは DU のいずれについても、発癌性があるという証拠は存在しない。この証拠の欠如は、ウランの吸引に起因するとされる肺癌についてさえも、そうである。危険評価や放射線量限度の設定について用心のために、DU は潜在的に発癌性があると仮定されているが、数十年にわたる研究において明確な癌の危険に関する証拠が欠如していることは重要であり、評価の結果は正しいバランスで述べられるべきである。
11. 子供達に対してウランはどのように影響するでしょうか?
大人と同様に、子供達は空気、食品、および飲料水に含まれる少量の劣化ウランに被曝している。しかしながら、ウランに対する被曝が子供達の健康に影響を与えたと報告する事例は知られていない。ウラン被曝による子供達の健康への影響がその罹患率において大人と異なるかどうかも知られていない。動物実験では、非常に幼い個体にウランが餌に与えられたとき、成体よりも多くのウランが血液中に吸収されることがわかっている。
ウランに対する被曝が人間の胎児の発達に影響するかどうかも知られていない。非常に高い投与量のウランを含んだ飲料水を餌として与えられた動物について死産の増加と先天性欠損症(奇形)が報告されている[5]。妊娠した動物に行われた実験では、注射されたウランのうち胎児にまで達したのは非常にわずかな量(0.03%)だけだった。吸引や経口摂取によってウランに被曝した母体から胎児にまで達するウランの量はさらに少ないと考えてよいだろう。母乳に含まれるウランについて入手可能な測定データは存在しない。その化学的特性のために、ウランが母乳中に濃縮されるということはありそうもない。
ウランの生殖器官に対する被曝の影響は知られていない。実験動物を用いたいくつかの実験で、非常に高い放射線量のウランが精子数の減少を引き起こしたものの、大部分の研究は影響をまったく示していない。
12. 劣化ウラン弾による被曝には潜在的にどのような被曝経路が考えられますか?
劣化ウラン弾に起因する主な潜在的な危険は DU 弾が装甲を備えた標的に命中したときに発生するエアロゾルの吸引である。衝撃で放散した粒子のサイズ、分布、そして化学的構成は非常に多様であるが、肺に入りうるエアロゾルの割合は 96% と高いものであろう。これらのエアロゾルの典型的な構成は、約 60% の U3O8、20% の UO2、および約 20% の他の非結晶酸化物である(Schripsick et al., 1984)。U3O8 と UO2 の両方は不溶性分子である。したがって、DU 弾によって高い放射線量を一番受けそうな人は、命中時に標的付近にいる人達や、命中の結果、標的を調査する(或いは戦車に入る)人達である。
エアロゾルが収まった後に DU 影響地域を訪れるか或いはそこに住んでいる人達の潜在的被曝経路は風や人間の活動による作用を通して土壌から再浮遊した DU 粒子の吸引である。再浮遊ウラン粒子は他の物質と化合してサイズが大きくなり、したがって吸引されて肺の奥深くまで到達するウランの割合は小さくなるので、危険性は低くなるだろう。別の潜在的な被曝経路は不注意や故意による土壌の経口摂取である。例えば、DU 弾が発射された戦場で働く農民はうっかり少量の土を経口摂取したり、子供達は時に故意に土を食べたりすることがある。
長期間において、より重要になる被曝経路は、土壌からの移動や植物への直接的蓄積によって飲料水や食物連鎖に混入した DU の経口摂取である。食品や水の経口摂取による危険性は一般に低く、と言うのもウランは食物連鎖によって効果的に運ばれることはないからである。
また、航空機から発射された DU 弾の大部分はたいていその狙った標的から外れると見積もられている。これらの弾丸の大部分が様々な深さで地表の下やときには建物に突き刺さるだろう。それらの一部は標的付近の地表に転がっているかもしれない。これらの弾薬の物理的状態は非常に多様であり、地面の特性に依存し、小さな破片からまるまる無傷な貫通体にまで多岐にわたっている。
これらの弾薬を見つけて、そしてそれを扱う可能性がある人は DU から放出される外部放射線に被曝しうるだろう。例えば、畑を耕す農民はそのうち無傷な弾丸を掘り起こすことがあるかもしれない。DU によって放出される放射線の種類が理由となって、被曝者が DU 弾に接触した場合にのみ、その受ける放射線量は深刻なものとなるだろう。加えて、貫通体に触ることによって、貫通体表面の風化によって形成される脆く砕けやすい酸化ウランの一部を不注意に経口摂取することがあるだろう。
時と共に、化学的風化が地中の貫通体の金属 DU を腐食させ、土壌に分散させるだろう。土壌の DU は酸化されて可溶性化学形態になり、地表や地下水を移動し、そこからついにはその後消費されうる食物連鎖に混入していくだろう。この経路において、人が DU に被曝するのにどれくらい長い時間がかかるかを予測するのは困難であるが、高レベルの DU が水や食品の中に検出されるまでに、数年を要すると考えるのが妥当である。
風媒性ウランの特性に関する情報については:
- Scripsick, R.C., Crist, K.C, Tillery, M.I., Soderholm, S.C., Differences in in vitro dissolution properties of settled and airborne uranium material, Report presented at Conference on occupational radiation safety in mining, Toronto, Ontario (Canada) 15-18 Oct 1984, Los Alamos National Lab, NM (USA) (1984).
13. 劣化ウラン弾に触れると、どのような放射線障害の可能性がありますか?
DU 貫通体による接触線量率[6]は約 2 mSv 毎時であり、主に DU 子孫核種のベータ粒子崩壊によるものである。この線量率では、DU 貫通体との長期接触が皮膚のやけど(紅斑)や他の深刻な放射線による影響を導くというのはありそうもない。それでも、DU 弾の取り扱いによって受ける可能性のある放射線量は、被曝や扱い時間を最小限にとどめ、防護衣服(手袋着用が求められる)の着用が求められる水準である[7]。したがって、人々が弾丸に触れるのを確実にやめさせるために公共広報活動が必要とされるかもしれない。これはどんな危険評価にも含まれるべきであり、このような予防措置はその地域で使用された弾薬の範囲と数に従って施行されるべきである。
14. DU は環境に対してどのような影響がありそうですか?
劣化ウランによる環境影響は、DU 弾が使用される個々の状況や、影響を受ける環境の物理的、化学的、および地質学的特性に依存する。
しかしながら、一般的な結論はそれでもなおいくつか導かれうる。試験場で実施された研究は、装甲標的に対する貫通体の命中によって発生する DU エアロゾルのうち、小さい粒子は風によって数百メートル離れたところまで運ばれるかもしれないものの、ほとんどが命中してから短時間(数分)で標的サイトのすぐ近くで収まることを示している。
いったん DU エアロゾルが地面に落ち着くと、劣化ウラン粒子は他の物質と化合してそのサイズを増大させ、吸引の危険性は小さくなる。吸引の潜在的な危険性は風の作用や耕作のような人間の活動によって地面から再浮遊した物質に起因するものであろう。時と共に、地表の劣化ウランの濃度は、劣化ウランを遠くに運んだり土壌から洗い流したりする風雨のために減少するだろう。再浮遊した物質の吸引に起因するいかなる危険も、したがって時と共に減少するだろう。
土壌に存在する劣化ウランは地表や地下水を移動し水流に流れ込むことがある。また、植物は土壌や水に含まれる DU を吸い上げるだろう。植物や水に含まれる DU のごく一部は結果として水面の上に直接沈殿する。土壌の化学的および物理的な構成が DU 粒子の溶解度と移動性を決定するだろう。水や植物に含まれる DU は草や土壌、水の経口摂取によって家畜へと移動するだろう。諸々の研究は、動植物によるウランの生物濃縮はそれほど高くなく、したがって、ウランは事実上食物連鎖では輸送されないということを示している。
土壌中の劣化ウランは酸化されて可溶性化学形態になり、地表と地下水を移動し、食物連鎖に混入していくだろう。これが起こるのにどれくらいの時間がかかるかを予測するのは困難である。化学的風化の結果として、地面に転がっていたり地表の下に埋まっている DU 弾は時と共に腐食し、DU 貫通体の金属ウランはゆっくりと酸化ウランへと変化するだろう。個々の土壌の特性が酸化の速度と化学形態、および劣化ウランの移動速度や溶解度を決定するだろう。この環境的経路で劣化ウランは、長い時間(数年のオーダーで)をかけて地下水や飲料水に溶解し、結果として高レベルに達するかもしれない。
水や食品の消費は DU の長期的な潜在的摂取経路である。このことを考慮し、水源を監視することは経口摂取による摂取の可能性を評価するために有効な手段かもしれない。もしそれが容認できないレベルにあると考えられるならば、DU のレベルを減少させるために何らかの形で濾過/イオン交換システムが提供されるべきだろう。
【訳注】
[1] 北大西洋条約機構(NATO: North Atlantic Treaty Organization)のサイト。 原文では www.nato.org とあったが、正しくは www.nato.int である。www.nato.org は Nations Against Terrorist Organizations という怪しげなサイト。
[2] Lubin et al. (1994) を参考文献に含む Duport (2002) - [ Is the radon risk overestimated? Neglected doses in the estimation of the risk of lung cancer in uranium underground miners. Radiation Protection Dosimetry. 98(3): 329-338. ] の和訳 『ラドンのリスクは過大評価されているか?―ウラン鉱山での肺がんリスク推定において見過ごされている線量―』 が「放射線と健康を考える会」によって公開されている。
また、McGeoghegan & Binks (2000) と McDiarmid et al. (2000) は以下から入手できる。
- McGeoghegan, D. & Binks, K., 2000, The mortality and cancer morbidity experience of workers at the Springfields uranium production facility, 1946-95. Journal of Radiological Protection. 20: 111-137.
- McDiarmid, M. A., Keogh, J. P., Hooper, F. J., McPhaul, K., Squibb, K., Kane, R., DiPino, R., Kabat, M., Kaup, B., Anderson, L., Hoover, D., Brown, L., Hamilton, M., Jacobson-Kram, D., Burrows, B., & Walsh, M., 2000, Health effects of depleted uranium on exposed Gulf War veterans. Environmental Research. 82(2): 168-180.
[3]
[4] 原文では 3 μm per gram とあったが、明らかに 3 μg per gram の誤り。
[5] 以下の文献を参考にされたい。Albina et al. (2003) の Introduction に目を通すとわかるとおり、これらの研究が扱っているのは化学的毒性である。
- Albina, M. L., Belles, M., Gomez, M., Sanchez, D. J., & Domingo, J. L., 2003, Embryotoxicity and teratogenicity of uranium in mice following subcutaneous administration of uranyl acetate. Experimental Biology and Medicine. 228(9): 1072-1077.
- Bosque, M. A., Domingo, J. L., Llobet, J. M., & Corbella, J., 1993, Embryotoxicity and teratogenicity of uranium in mice following subcutaneous administration of uranyl acetate. Biological Trace Element Research. 36(2): 109-118.
- Domingo, J. L., Paternain, J. L., Llobet, J. M., & Corbella J., 1989, The developmental toxicity of uranium in mice. Toxicology. 55(1-2): 143-152.
[6]
[7] 誤訳の可能性あり。原文の末尾に誤植があり、おそらく A public information から次の文なのだが、だとしても訳者の能力では文の構造にいまいち自信が持てない。
Nevertheless, the dose that could be delivered from handling of DU ammunitions is such that the exposure and handling time should be kept to a minimum and protective apparel (gloves should be worn). A public information campaign may, therefore, be required to ensure that people avoid handling the projectiles.
山形浩生さんに助けていただきました。ありがとうございました。
【訳者後記】
翻訳した人間はどちらかと言うと右翼(?)に好意的です。できるだけ忠実に翻訳したつもりではありますが、微妙なニュアンスに訳者の肩入れが混入しているかもしれません。疑問な点は原典にあたることをお勧めします。
ついに、IAEAまで訳しちゃいました。これでそれらしい機関による劣化ウランの概要報告は網羅できたかも。
これ以上は、たぶん専門的になりすぎて(量的にも)手に負えないので、とりあえず終了。なんとなく現状は把握できるのではないでしょうか。
(追記: 11章を若干いじりました -> dose の訳を放射線量から投与量へ; 参考文献にリンク。 2005/07/19)
公開:2005/03/16
---
この日本語訳は非公式なものです。IAEA の見解を正確に伝えているという保証はありません。
0 コメント:
コメントを投稿